RGB Encoder

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings

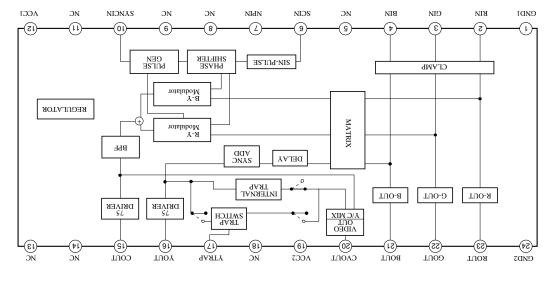
Wm	087	CXA2075M		noitsaissib
Wm	1520	CXA2075P	αЧ	Allowable power
Э.	120	of 2 8-	Tstg	 Storage temperature
O.	9 L +	of 0S-	T^obl	 Operating temperature
٨	t	7 L	ΛCC	 Supply voltage

Recommended Operating Condition

Vcc 1,2 5.0±0.25 Supply voltage

Applications

computers Image processing of video games and personal


Description

personal computers and video games. It is best suited to image processing of sync, subcarrier and analog RGB signals. are obtained just by inputting the composite Isnimies S ent not study O/Y bas study o oebiv generators necessary for encoding. Composite video signal. This IC has various pulse converts analog RGB signals to a composite The CXA2075P/M is an encoder IC that

Features

- Single 5 V power supply
- Compatible with both NTSC and PAL
- Built-in 75Ω drivers (composite video
- SOMHz high resolution RGB outputs output, Y output, C output, RGB outputs)
- Extended frequency response for better
- luminance resolution. than broadcast quality chroma and
- Built-in wideband filter for the C signal and Subcarrier input can be sine wave or pulse
- Built-in R-Y and B-Y modulator circuits delay line for the Y signal
- Built-in PAL alternate circuit
- Burst Flag Generator circuit
- Half H killer circuit
- Built-in chroma trap circuit
- Eliminated external precision components

CXA2075 Block Diagram and Pin Configuration

Pin Description

BF pulse monitoring output. Incapable of driving a 75Ω load.	Noos ≥ 800 × 800	V 3.6 H V S.E J	тиояв	8
Pin for switching between NTSC and PAL modes NTSC: Vcc, PAL: GND	SOK SOCI	۷ ۲.۱	NIdN	۷
Subcarrier input. Input 0.4 to 5.0 Vp-p sine wave or pulse. Refer to Notes on Operation, Nos. 3 and 5.	40k (6ND1		RCIN	9
NO CONNECTION			NC	g
Analog RGB signal inputs. Input 1000 RGB signal inputs. 100% = 1 Vp-p (max.). To minimize clamp error, input at as low impedance as possible. Icle turns ON only in the burst flag period.	3 VCC1	Black level when clamped 2.7 V	ВІИ СІИ ВІИ	3 4
Ground for all circuits other than RGB, composite video and Y/C output circuits. The leads to GNDS should be as short and wide as possible.		* V 0	сирі	ļ
Description	Equivalent Circuit	Pin Voltage	Symbol	ni9 .oN

Pin Description

Pin for reducing cross color caused by the subcarrier frequency component of the subcarrier frequency component of the Y signal. When the CVOUT pin is in use, EITHER conect a resistorbetween YTRAP and VCC, (3.3K for NTSC) to enable the internal trap OR connect a capacitor or a capacitor and an inductor in series between YTRAP and GND. No influence on YOUT pin. To influence on YOUT pin. No influence on YOUT pin. No influence on YOUS pin.	1,000 × 1,5K	V 0.1 - 55V	ЧАЯТҮ	۷۱
Y signal output. Capable of driving a 75Ω load. Befer to notes on operation, Mos. 6 and 9.	2.2 V S.2 Y	V E.1	TUOY	91
Chroma signal output. Capable of driving a 752 load. Refer to notes on operation, Nos. 6 and 9.	GND2 GND2 GND2 GND2 GND2	۱.0۷	COUT	91
Power supply for all circuits other than RGB, composite video and Y/C output circuits. Refer to Notes on Operation, Nos. 4 and 10		έ.0 √*	t₀oV	12
Composite sync signal input. input TTL-level voltages. L (≤ 0.8 V): SYNC period H (≥ 2.0V)	40k Auk	V2.2	NI SANC	01
Description	Equivalent Circuit	Pin Voltage	Symbol	ni¶ .oM

Pin Description

Analog RGB signal outputs. Capable of driving a 75Ω load. Refer to notes on operation, Nos. 6 and 9.	SOV SOV SOV	V 0.1 V 0.1 V 0.1	BOUT GOUT TUOR	53 55 51
Composite video signal output. Capable of driving a 752 load. Refer to notes on operation, Nos. 6 and 9.	2.2 K 4002	۱.0۷	CVOUT	50
Power supply for RGB, composite video and Y/C output circuitsDecouple this pin with a large capacitor of 10 µF or above as a high current flows. Refer to Notes on Operation, Nos. 4 and 10		₽.0 V*	SooV	61
Description	Equivalent Circuit	Pin Voltage	Symbol	ni9 .oN

Electrical Characteristics

				·1r	ndılı sı	ONLO	SO LIBI	IM 6 III	6 מווו	heguu	: 4011dge dp	סומוויף אטונמט			
	phase θ _{PAL1/2} 335 235 235 ° · * Clamp voltage: voltage appearing at Pin 9 when CSYNC is input.														
бәр		132	159	SG5: CSYNC		VOI	2C2	Λ9	2C4	ras ot eas		PAL burst			
	1.1 341	0.1	9.0	SG4:SHM wave, 4.43MHz q-qVZ.0		16k	352				K (BP1/2)	PAL burst level ratio			
Vm q-q	20	0 1	3 0	SG1 to SG3: No signal SG4: SV wave, 3.58MHz 0.58 MHz component measured. Figure 6 SG1 to SG3: No signal			50K	SGS	۸۹	79S	152 of 553	(S\tY) of	Output frequency characteristic		
\$11 \$11 \$21 \$31 \$31 \$31	84.8 144 162 162 162 162 162 163 163 163 163 163 163 163 163 163 163	82.0 401 6.95 745 745 747 747 748	22.0 94 2.65 10.2 12.01 2.65 2	SG1 to SG3: 1.0 Vp-p (Max.) SG4: SIN wave, 3.58MHz 0.5Vp-p SG5: CSYNC TTL level. Figure5	A/C	50K	SGS	εΛ	79S	152 ot 553	(B) 1/5 (B) 1/5	Burst levell R chroma ratio R phase G chroma ratio G phase B chroma ratio B chroma ratio B phase B bhase Burst width			
											[TUC	NO & TUOD]			
Вb		G.0-	d d	SG1 to SG3: DC direct coupling D.S.Cyoc, 1.070-p f=200KHZ/SMHz Pin 9 clamp voltage.Figure		30K	ΛZ	Λ٩	Λ0	152 ot 553	(S\tY) of	Output frequency characteristic			
Λ Λ Λ d-dΛ	85.0 92.0 94.0 360.0 28.0	12.0 12.0 24.0 80.0 17.0	32.0 71.0 38.0 30.0 6.065	SG1 to SG3: 100% color bar input, 1.0 Vp-p (Max.) SG5: CSYNC TTL level Figure 4	B/C	30K	SGS	Λ٩	Λ0	rds ot sds	\(\lambda(\lambda(\lambda)\) \(\lambda(\lambda(\lambda)\) \(\lambda(\lambda(\lambda)\) \(\lambda(\lambda)\) \(\lambda(\lambda)\) \(\lambda(\lambda)\) \(\lambda(\lambda)\)	Output sync level B100%: Y level B100%: Y level			
				333 . 733							-	IOVO & TUOY]			
				Figure 2	Н					SE3	Vo(B)	characteristic			
ЯР		9.0-	2.5Vp.c, 1.0Vp-p f=200kHz/27MHz Pin 9 = clamp voltage	3		ΛZ			298	Vo(G)	Įιedneucλ				
						SG1 to SG3: DC direct coupling	а					ยยเ	(A)oV	FIGB output	
				Pin 9 = clamp voltage Figure 2	Ь					263	Vo(B)				
d-d∧	87.0	١٢.0	7 9.0	2.5Vpc, 1.0Vp-p f=200kHz	3		ΛZ			298	(Ð)oV	voltage			
							SG1 to SG3: DC direct coupling	а					เอร	(되)이	RGB output
[R. G. B OUT]															
Am		30		SG4: SIN wave 3.58 MHz	ccs	20K	202	2 A SG2	2C¢	5 V S	sool	Current Consumption2			
		90		Icc1 No input signal, SG5: CSYNC TTL level,				-			rool	Current F noitqmusnoD			
.JinU	Мах.	-dγT	.niM	Measurement Conditions	ussəM amənt fuioq			NIdN		NIA	Symbol	mətl			
						98	⊅S	es	SS	١S					